Acpi что это в компьютере

ACPI (Advanced Configuration and Power Interface) – это стандарт (спецификация), определяющий способы программного управления электропитанием компонентов компьютера с помощью встроенных средств ОС (операционной системы). Другими словами данная технология предназначена для управления состоянием персонального компьютера и энергопотреблением его компонентов.

Кроме управления электропитанием данный стандарт позволяет выполнять конфигурацию устройств Plug and Play.

Управление электропитанием и конфигурирование устройств Plug and Play осуществляется на уровне операционной системы (предшественник спецификации ACPI стандарт АРМ реализован на уровне BIOS), то есть ОС практически полностью управляет энергопотреблением и конфигурированием устройств ПК.

Спецификация ACPI требует поддержки со стороны, как материнской платы, так и подключаемых устройств.

Для технологии ACPI определяют несколько состояний и подсостояний системы (компьютера): глобальные состояния системы, состояния ЦП (центрального процессора) и состояния устройств.

Глобальных состояний системы различают четыре:

G0 (S0) – нормальное функционирование системы;

G1 (S1, S2, S3, S4) – режимы уменьшенного энергопотребления, о которых мы поговорим чуть ниже.

G2 (S5) – программное выключение. В данном состоянии компьютер выключен, но блок питания находится под напряжением.

G3 – состояние в котором питание полностью отключено от блока питания (БП).

Режимы уменьшенного энергопотребления (S1, S2, S3, S4):

S1 (Power On Suspend, POS, Doze) – режим энергосбережения, при котором отключается монитор, винчестер, но на центральный процессор и ОЗУ (модули оперативной памяти) питание подается, снижается частота системной шины. Процессорные кэши сброшены, процессоры не выполняют инструкции, отключен генератор тактовой частоты ЦП.

S2 (Standby, Standby Mode) – режим уменьшенного энергопотребления. При данном режиме происходит отключение монитора, винчестера. От ЦП отключается напряжение питания. Останавливаются все тактовые генераторы (продолжают работать только те тактовые генераторы, которые необходимы для работы оперативной памяти). Питание подается только на системную память (в ней хранится информация о состоянии системы).

S3 (Suspend to RAM, STR, Suspend) – ждущий режим. При данном режиме энергосбережения питание подается только на оперативную память (в ней хранится информация о состоянии системы). Все другие компоненты ПК отключены.

S4 (Suspend to Disk, STD, Suspend to Hard Drive, S4-Hibernation) – глубокий сон. При данном режиме энергосбережения текущее состояние системы записывается на винчестер, после чего следует отключение питание всех компонентов ПК.

Для стандарта ACPI определяют несколько состояний процессора:

C0 – процессор работает в номинальном режиме.

C1 (Halt) – состояние уменьшенного энергопотребления. Работа процессора приостановлена, но он может незамедлительно вернуться в рабочее состояние.

C2 (Stop-Clock) – работа процессора приостановлена. Но регистры и кэш остаются в рабочем состоянии. Процессор может немедленно приступить к обработке заданий.

C3 (Sleep) – режим сна. Процессор в спящем режиме не обновляет кэш.

Для технологии ACPI также определяют четыре состояния устройств:

D0 – устройство работает в номинальном режиме.

D1 – режим уменьшенного энергопотребления (устройство использует меньше энергии чем состояние D0).

D2 – режим уменьшенного энергопотребления (устройство использует меньше энергии чем состояние D1).

D3 – устройство выключено.

Интерфейс автоматического управления конфигурацией и питанием (ACPI) пришел на смену уже устаревшего АРМ (Advanced Power Management).

Источник

Технологии ACPI и OnNow

В данной статье пойдет речь о вопросе управления энергопотреблением в современных компьютерах, выражаясь в специфической терминологии — Power Managment. Нет-нет, не закрывайте окно браузера, считая, что вас это не касается, поскольку вы не являетесь владельцем ноутбука и не состоите в партии зеленых. Речь пойдет о гораздо более интересных вещах: совместной инициативе Intel, Microsoft и Toshiba — ACPI, и одном из наиболее интересных ее практических воплощений в Windows98/NT — технологии OnNow, должной обеспечить «постоянно доступный PC».

Итак, что же собственно это такое — ACPI? Для начала, наверное, стоит расшифровать эту аббревиатуру. ACPI, в переводе на человеческий язык, означает Advanced Configuration and Power Interface. Или, говоря по-русски, «интерфейс расширенного конфигурирования и управления питанием». Его задача — обеспечить взаимодействие между операционной системой, аппаратным обеспечением и BIOS системной платы.

Посмотрим сначала, что творится в этой области сегодня. Большинство материнских плат, даже вышедших на базе таких относительно новых чипсетов как VIA Apollo MVP3 или Intel 440BX, не поддерживают расширенное управление энергопотреблением ACPI, несмотря на то, что по идее, ACPI-совместимым считается еще аж 430TX, а сам ACPI был анонсирован в апреле 1996 года. Его использование начинается только сегодня, по мере того, как для вышедших недавно материнских плат создаются новые версии BIOS, частично поддерживающие ACPI.

Итак, повторюсь, основная задача ACPI — способность разумно включать и выключать PC и подключенную к нему периферию. Причем, помимо принтеров, сетевых карт, дисководов CD-ROM и прочая и прочая, могут быть и такие, пока еще экзотические устройства, как телевизор, видеомагнитофон, музыкальный центр. И конечно речь идет об умной активации PC. Так, чтобы видеоплеер при установке в него кассеты смог разбудить PC, который включил бы телевизор.

Однако на данный момент ACPI может интересовать среднего пользователя только как теоретическая архитектура. Куда интереснее основанная на нем технология OnNow, уже сегодня могущая предоставить кое-какие вполне осязаемые приятности. Ее цели: убрать задержки при включении и выключении компьютера, позволить обслуживающим приложениям, таким как дефрагментация диска или проверка на вирусы выполняться в то время, когда компьютер выключен, и вообще, улучшить общую картину энергопотребления PC.

Режим S3 (настоящий OnNow) не может быть реализован из-за того, что существующие системные платы не имеют схем разделенного питания компонентов. Поэтому, до выхода следующего поколения материнок OnNow в полном объеме реализован быть не может. Пока же, путем модификации BIOS, можно добиться только некой эмуляции — S4.

Первой же материнской платой, которая будет иметь раздельные схемы питания для своих узлов и будет, таким образом, поддерживать режим S3 станет ASUS P2B-E — модификация давно известной системной платы P2B от Asustek. Кроме возможности suspend-to-memory, кстати, P2B-E будет иметь 5 слотов PCI. В серийное производство эта плата будет запущена в ноябре текущего года.

Но вернемся к нашим баранам. Спецификацию OnNow разрабатывала небезызвестная вам фирма Microsoft. Угадайте с трех попыток, кто по этой спецификации должен стать управляющим центром компьютера по всем этим вопросам? Первые два ответа можно не считать, правильно — Windows.

В общем, я полагаю, тенденцию вы уловили. Компьютер, постоянно находящийся наготове.

Обидно, однако, что пока с практическим использованием ACPI очень дела обстоят неважно. Возьмем самое яркое видимое и единственное на данный момент проявление ACPI в Windows 98 — Hibernate (по-русски — зимняя спячка). Проще говоря, это то самое хваленое сбрасывание данных из оперативной и видеопамяти на винт, с последующим быстрым восстановлением при включении компьютера. Таким образом, у нас получается аналог спящего режима, когда к вашим услугам предоставлены всегда запущенные приложения, но с нулевым потреблением энергии. Так вот, после появления в вашем компьютере версии BIOS, поддерживающей ACPI и некоторых манипуляций с установкой Windows 98, у вас действительно в Control Panel/Power Management появится пара вожделенных пунктов:

И соответствующий пункт в закладке Advanced:

Я уже не говорю о не так хорошо заметных проявлениях в списке системных устройств:

Как вам нравятся такие устройства, как ACPI System Button или Composite Power Source?

Но для появления всего этого после перепрошивки BIOS недостаточно просто переустановить Windows 98. Поддержка ACPI — опциональная, поэтому при инсталляции надо запустить SETUP с ключами /P J или же поправить реестр, добавив в ветке HKEY_LOCAL_MACHINESoftwareMicrosoftWindowsCurrent VersionDetect новую DWORD-переменную ACPIOption, установленную в 1.

Однако, небольшое но. Ох уж это но, всегда оно появляется. Как обычно, новая технология отказывается работать в Windows сразу и без ошибок. Эта печальная практика затронула и OnNow. В Windows 98 фактически он не работает. До выхода Service Pack 1 все ограничится этими красивыми, но, к сожалению, бесполезными картинками. Сегодня в Windows’98 не работают ни Hibernate, ни вообще, какие либо функции управления питанием через ACPI. Весь контроль над ними берет на себя APM. Взять тот же Composite Power Source (по-русски говоря, — блок питания в корпусе): при входе в спящий режим через ACPI он должен выключаться, а при входе через APM (сегодня) — не выключается. Улавливаете разницу в уровне контроля над железом?

Про Hibernate я вообще молчу. Там все отягощается еще и файловой системой. По крайней мере, по текущей информации, Hibernate не будет работать с FAT32. Только с FAT16. Кроме этого, для работы необходимы поддерживающие OnNow драйвера видеокарты. Пока их только делает ATI. Но и этого еще недостаточно. Многие из существующих CD ROM и SCSI-контроллеров с Hibernate также работать не могут. Остается надеяться, что к выходу SP1 (1999 год) Microsoft удастся справиться с этими проблемами. А производителям комплектующих — написать драйверы, позволяющие их продуктам корректно работать с ACPI. Уж больно не хочется видеть окно, возникающее сейчас на моем экране при попытке уйти в Suspend Mode:

Итог: любимый город может спать спокойно. По крайней мере, до 99 года, когда выйдет SP1 для Windows 98, а комплектующие и программы научатся работать в паре с ACPI.

Возможно, однако, что OnNow будет все же работать через BIOS, в обход операционной системы. Например, плате ASUS P2B-E не будет требоваться команда Windows 98 для перехода в S3 (suspend-to-memory), а уже давно вышедшая плата Aopen AX-6BC умеет делать S4 (suspend-to-disk) не пользуясь средствами операционной системы.

Источник

ACPI — технология управления питанием

В наших с вами компьютерах существует множество опций, к существованию которых мы давно привыкли и воспринимаем их как должное. Среди них есть и такие, которые были введены в компьютерную жизнь благодаря принятию в середине 90-х гг. ведущими производителями компьютерного оборудования стандарта ACPI(Advanced Configuration and Power Interface — Расширенный интерфейс управления настройкой и питанием). Этот стандарт предоставляет операционной системе и, как следствие, пользователю компьютера мощные и эффективные средства для контроля аппаратных компонентов и управления их работой.

Например, в операционной системе Windows благодаря технологии ACPI пользователь может программно установить такие параметры, как временное или постоянное отключение компьютера или отдельных его компонентов, переход компьютера в режим пониженного энергопотребления, в спящий режим или в режим гибернации.

Эти функции кажутся нам теперь совершенно естественными, но в ранних версиях Windows, таких как Windows 95, не поддерживавших технологию ACPI (не говоря уже об операционных системах семейства DOS), операционная система не могла даже автоматически выключить компьютер, и пользователю приходилось самостоятельно нажимать кнопку питания для того, чтобы выключить системный блок.

История создания

Нельзя сказать, что стандарт ACPI появился на пустом месте. До его появления существовал стандарт управления питанием APM. Однако он поддерживался исключительно на уровне BIOS. Кроме того, его возможности были ограничены и в настоящее время этот стандарт практически не используется.

ACPI изначально разрабатывался в качестве открытого стандарта. Первая реализация ACPI была создана в 1996 году компаниями Toshiba, Intel и Microsoft, к которым позже присоединились Phoenix и Hewlett-Packard. Стандарт ACPI постоянно совершенствуется, а его последняя версия была выпущена в 2011 г. Первоначально в ACPI использовалась 16 и 32-битная адресация, которая позже сменилась 64-битной. В версии ACPI 3.0, вышедшей в 2004 г., была добавлена поддержка разъемов SATA, а также шины PCI Express.

На сегодняшний день эта технология поддерживается большинством операционных систем, а также процессорных архитектур. Помимо семейства ОС Microsoft Windows стандарт ACPI поддерживается также такими семействами ОС, как Linux и Free BSD.

Принцип работы

ACPI представляет собой независимый от платформы стандарт, облегчающий поиск устройств, их конфигурирование, управление питанием, а также мониторинг. Благодаря принятию стандарта ACPI были устранены конфликты между BIOS и операционной системой, и управление питанием стало осуществляться под контролем операционной системы.

Функции ACPI хранятся в БИОСЕ компьютера. Это справедливо, разумеется, для тех BIOS, которые поддерживают ACPI. Кроме того, для работы функций ACPI требуется поддержка технологии со стороны операционной системы.

ACPI на уровне BIOS состоит из нескольких компонентов, которые включают ядро ACPI и таблицы данных. В отличие от таких встроенных в BIOS технологий, как PnP, реализация ACPI в рамках BIOS не столь объемна, а функции ACPI BIOS ограничиваются организацией загрузки таблиц ACPI в память компьютера. Таблицы данных ACPI содержат сведения об аппаратной конфигурации и помогают операционной системе управлять аппаратными компонентами.

Преимущества

Какие же преимущества дает повсеместное внедрение стандарта ACPI простому пользователю?

Основная функция ACPI – контроль со стороны операционной системы за потреблением энергии всего компьютера и его отдельных компонентов. Например, при помощи функций ACPI операционная система может погрузить компьютер в режим сна, а также автоматически выключить питание. На практике пользователь может так настроить поведение компьютера, что он ничем не будет отличаться от электронной бытовой техники, такой, например, как музыкальный центр или телевизор, которые готовы к работе сразу же после того, как вы нажимаете их кнопку питания. При этом пользователь может пропустить ставшую традиционной загрузку компьютера.

Но этим возможности ACPI не ограничиваются. Пользователь может также запрограммировать поведение кнопки выключения питанием на системном блоке. При ее нажатии система будет спрашивать у вас, что делать — выключать ли компьютер, переводить ли его в спящий режим, режим гибернации, то есть, приостановки работы компьютера с сохранением текущей сессии, или ничего не делать. Единственной кнопкой на блоке, не зависящей от программных установок, на компьютере, поддерживающем ACPI, осталась лишь кнопка Reset.

Помимо контроля управления энергопитанием компьютера, технология предоставляет средства мониторинга состояния оборудования, что позволяет отслеживать такие параметры, как температура материнской платы и процессора, скорость вращения вентиляторов, и.т.д. Пользователи ноутбуков благодаря стандарту ACPI получили возможность следить за уровнем заряда батареи.

Стандарт ACPI определяет несколько режимов потребления энергия – номинальный режим, энергосберегающий режим, режим полной остановки, и.т.д. Эти режимы поддерживаются как всем компьютером, так и его отдельными компонентами, в том числе и центральным процессором.

Пользователь может настроить уровень поддержки ACPI компьютером, а также включить или выключить отдельные опции ACPI в БИОСЕ при помощи интерфейса настроек BIOS Setup.

Основные преимущества технологии:

Заключение

Появление технологии ACPI является важным этапом эволюции компьютерных устройств. Благодаря появлению технологии ACPI компьютеры научились работать в более гибком режиме, подстраиваясь под нужды пользователя и стали более экономичными. Кроме того, благодаря ей упростился контроль со стороны операционной системы над аппаратным обеспечением компьютера.

Источник

В современном компьютере программная поддержка управления питанием осуществляется со стороны системы ACPI, а аппаратная поддержка отводится следующим компонентам системной платы:

1. Разъему для подключения основного кабеля блока питания и разъемам для подключения вентиляторов.

2. Системе пробуждения по сигналам из сети.

3. Технологии “мгновенной готовности компьютера”.

4. Технологии “возобновления работы по звонку”.

5. Пробуждения по сигналам из порта USB.

6. Пробуждения по сигналам от устройств PS/2.

7. Поддержка пробуждения при получении сигнала управления питанием (PME#).

8. Поддержка драйверов технологии Intel Quick Resume (QRTD).

Для перевода различных устройств ПК из одного режима питания в другой особое место в ACPI отведено представлению о состояниях функциональной готовности или отключения устройств, имеющих непосредственное отношение к уровням энергопотребления и энергосбережению. В стандарте ACPI для каждой группы управления существует определенный комплект состояний. Уровни состояний различаются потребляемой мощностью, величиной тока нагрузки, тактовой частотой системы и процессора, а также скоростью «пробуждения» устройств системы. ACPI опирается на функции управления Windows и BIOS. Если BIOS системной платы поддерживает систему ACPI, то управление питанием передается операционной системе. Это упрощает конфигурирование параметров системы, поскольку автоматические регулировки находятся в одном месте в операционной системе. ACPI располагает интерфейсом, который поддерживает на системной плате следующие функции:

1. Технологию Plug and Play, включая нумерацию шин и устройств.

2. Управление питанием отдельных устройств и карт расширения.

3. Средства поддержки в режиме ожидания мощности менее чем 15 Вт.

4. Компоненты программного отключения Soft Off.

5. Компоненты поддержки различных событий для пробуждения системы.

6. Включение питания и спящего режима на лицевой панели компьютера.

Система ACPI состоит из последовательности таблиц. В них определены имеющиеся в системе устройства, а также их характеристики с точки зрения конфигурации системы и управления энергопитанием. Таблицы создаются BIOS в процессе загрузки компьютера. Для определения ACPI-совместимости системы, в процессе загрузки BIOS просматривает специальные записи в двух таблицах FADT (Fixed ACPI Description Table) и RSDT (Root System Description Table). Найденные записи называются дескрипторами, среди них: OEM ID, OEM TABLE ID, OEM REVISION и CREATOR REVISION.

Если таблицы отсутствуют или информация в дескрипторах недействительна, BIOS считается несовместимой с интерфейсом ACPI, в таком случае устанавливается уровень аппаратных абстракций, или ACPI HAL.

При инициализации ACPI могут появиться сообщения об ошибках. Сообщения на красном фоне свидетельствуют о проблемах с аппаратным обеспечением и BIOS, на синем фоне о проблемах с программным обеспечением. Чаще всего эти ошибки свидетельствуют о частичной или полной поддержке функций ACPI системой BIOS или драйверами УВВ.

Система ACPI обеспечивает передачу в блок питания сигналов управления, предназначенных для реализации альтернативных способов включения и выключения компьютера. Блоки питания семейства ATX12V обладают линиями управления включения и выключения питания компьютера и содержат описанную ниже автоматику отключения питания системы. При получении этой системой соответствующей команды блок питания отключает подачу всех напряжений, не связанных с питанием устройств в режиме ожидания. При возобновлении работы после сбоя в сети компьютер возвращается в тот режим питания, в котором он был до этого (включен или отключен). Отклик компьютера вы можете настроить в меню Boot программы Setup BIOS с использованием опции Last «Power» State.

ACPI обладает памятью для возврата состояний. Например, в режиме мгновенного включения компьютера On Now в ОЗУ или на жестком диске сохраняются коды состояния компьютера. Ниже рассмотрены возможности, поддерживаемые блоком питания этого типа для управления включением/выключением компьютера.

Благодаря ACPI компьютер может быть переведен в состояние программного отключения Soft Off. Благодаря этой возможности компьютер может использовать источники постоянного питания при минимальном энергопотреблении.

Переход компьютера в режим питания Soft Off осуществляется нижеследующими способами:

1. Нажатием кнопки Power на лицевой панели компьютера, которая подключена к системной плате и не вызывает прекращения подачи питания.

2. Путем отключения с помощью операционной системы (на панели для выключения компьютера выбирается одна из трех возможностей завершения работы).

3. Во время отсутствия и появления электропитания в сети, что зависит от установки

параметров в меню Setup BIOS.

Для перевода аппаратных средств из состояния Soft Off в режим полной активности в меню Setup BIOS можно выполнить перечисленные ниже действия:

1. Использовать кнопку Power на лицевой панели компьютера или на клавиатуре (если таковая предусмотрена).

2. Дважды щелкнуть левой или правой кнопкой компьютерной мыши PS/2.

3. Использовать запрограммированную клавишу или клавиатурную команду.

4. Применить сигнал через модем по телефонной линии.

5. Использовать пакет программ Magic Packet, а также платы интерфейса локальной

вычислительной сети (ЛВС) и специального программного обеспечения ЛВС.

6. Активизировать по сигналам интервальный таймер.

7. Настроить автоматическое включение ПК в случае отсутствия питания.

Технология ACPI позволяет автоматизировать процесс распределения системных ресурсов с помощью операционной системы и выбора состояний управления электропитанием PMS. Для перевода различных устройств ПК из одного режима питания в другой особое место в ACPI отведено представлению о состояниях функциональной готовности или отключения устройств, имеющих непосредственное отношение к уровням энергопотребления и энергосбережению.

Для доступа к функциям PMS выберите команду Свойства контекстного меню рабочего стола. В диалоговом окне Свойства:Экран выберите вкладку Заставка и щелкните на кнопке Питание. В диалоговом окне Свойства:Электропитание выберите вкладку Схемы управления питанием. Из меню раздела Схемы управления питанием выберите доступную схему управления. В меню настроек задайте период отсутствия активности дисплея и жестких дисков, спустя который компьютер отключит их. Настройте параметры ждущего и спящего режимов. В стандарте ACPI управление питанием компьютера осуществляется настройкой состояний, или режимов питания.

Переходы состояния питания системы и устройств. При наличии интерфейса ACPI операционная система управляет всеми переходами состояния питания системы и устройств. Операционная система включает и выключает режим низкого энергопотребления, основываясь на информации о том, с какой интенсивностью используются приложения. Кроме того, информация поступает от пользовательских настроек, вводимых с помощью программы Setup BIOS. Компьютер (системная плата) ACPI поддерживает следующие основные состояния:

В пределах основной группы состояний энергопотребления системы существуют состояния сна, или ожидания (Sleeping States) от S0 до S5:

Процессор ПК тоже может находиться в «сонном» состоянии (различают состояния процессора от C0 до C3):

Состояние C3 предлагает еще более экономное потребление электропитания, чем в состояниях C1 и C2. Неблагоприятное аппаратное время ожидания для этого состояния предусмотрено через системные микропрограммы ACPI и операционное программное обеспечение, которое может использовать эту информацию, чтобы определяться, когда состояние C2 должно быть использовано вместо состояния C3. В состоянии C3 кэш-память процессора поддерживает режим хранения данных, но игнорируют любое к ней обращение. Операционное программное обеспечение обеспечивает поддержку связности кэш-памяти. Более глубокий Sleep (С4) включает состояние Deeper Sleep и состояние Intel Ehanced Deeper Sleep.

У процессоров Intel имеется группа входных контактов, при подаче на них управляющих сигналов происходит переход процессора в специальные состояния:

— сигнал на входе STPCLK# вызывает переключение процессора из рабочего режима в состояние STOP GRANT (процессор работает с приостановками и потребляет меньше электроэнергии). По снятию сигнала процессор возвращается в рабочий режим;

— сигнал на входе SLP# переключает процессор из состояния STOP GRANT в состояние Sleep (сна), он потребляет еще меньше энергии, не выбирает и не выполняет команды программы. По снятию процессор возвращается в режим STOP GRANT;

— сигнал на входе DPSLP# вызывает переход процессора из режима «сна» (Sleep) в режим «глубокого сна»

(Deep Sleep). По снятию сигнала процессор возвращается в режим «сна» (Sleep).

— сигнал на входе DPRSTP# вызывает переход процессора из режима «глубокого сна» (Deep Sleep) в режим «глубочайшего сна» (Deeper Sleep). По снятию сигнала процессор возвращается в режим «глубокого сна» (Deep Sleep).

Один из основных способов регулировки потребления электроэнергии процессора состоит в чередовании его рабочих и нерабочих циклов. При этом используются значения Duty Width и Duty Value. Первое из этих значений определяет временной цикл, а второе соотношение периодов работы и периодов покоя. Останов процессора осуществляется за счет прекращения подачи сигналов тактовой частоты.

В процессорах архитектуры Nehalem имеется специальный блок PCU (Power Control Unit), предназначенный для мониторинга и управления питанием процессора (по сути, PCU – это целый микроконтроллер, т. е. процессор в процессоре). PCU, основываясь на данных сенсоров и датчиков, может полностью выключать отдельные ядра и блоки CPU. Благодаря этой функциональности инженеры Intel смогли внедрить в Core i7 технологию Turbo Boost. Относительная энергоэкономичность Core i7 обусловлена низким рабочим напряжением (1,20 В) и размещением в теле процессора специального микроконтроллера PCU, в функциональные обязанности которого входит мониторинг и регуляция показателей напряжения, силы тока (и температуры) ядер. Кроме того, PCU способен полностью отключать одно или несколько ядер от энергоснабжения. В зависимости от ситуации, при работе в приложениях, не (полностью) использующих многозадачные способности Nehalem, часть ядер отключается, а частота оставшихся – повышается (при этом центральный процессор в целом не выходит за рамки своего TDP).

Например, в четырехядерных Core i7 могут быть полностью отключены два либо три ядра, и во втором случае частота оставшегося единственного ядра будет поднята еще больше. Возьмем случай с двухядерным процессором. Поскольку в однопоточных приложениях от многоядерности эффекта мало, основную роль здесь играет производительность отдельно взятого ядра. Поэтому Intel предусмотрела увеличение частоты работающего ядра (non-idle core), в то время как второе (idle core) находится в одном из состояний бездействия C3-C6 (рис. 1) и его тепловыделение резко сокращается. Эту разницу использует работающее ядро и повышает свою частоту до достижения процессором граничного уровня TDP. Основные состояния ядра, автоматически определяемые процессором, показаны в табл. 1.

Рис. 1. Состояния энергопотребления процессора Core i7

Core State

Источник

Поделиться с друзьями
Компьютеры и приложения